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How do we model an interconnected system?

Interconnected system

Exs.: circuits, robots, chemical plants, etc. Modularity
Object-oriented modeling
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Example:

Cart with double pendulum
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TEARING & ZOOMING
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Zooming

Obtain models of the subsystems

Required modules in our example: Solid bars, servo’s.
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How do we model a building block?

N

3

2

1

Building block

Exs.: resistor, transformer, mass, spring, tank, solid bar, servo , etc.

Behavior of the terminal variables
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Examples of terminals and terminal variables:

Type of terminal Variables Signal space

electrical (voltage, current)

mechanical (1-D) (force, position)

mechanical (2-D) ((position, attitude),
(force, torque))

mechanical (3-D) ((position, attitude),
(force, torque))

thermal (temp., heat flow)

fluidic (pressure, flow)

fluidic - thermal (pressure, flow,
temp., heat flow)
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How do we model an interconnection?

Before:

Terminal 2

Terminal 1

Building

Building
block 1

block 2

After:

block 1
Building
block 2

Building

Interconnection
Identification of terminal variables

12



Examples of interconnection equations:

Pair of
terminals

Terminal Terminal Interconnection law

electrical

1-D mech.

2-D mech.

thermal

fluidic

fluidic -
thermal
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How do we approach such modeling tasks?
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Approach should:

be pedagogically convincing

be computer oriented

use mathematical language, with appropriate concepts

aim at physical systems

deal with interconnection without apologies

be adapted to first principles models

include dynamics, as well as space-time phenomena
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Classical approaches

Dynamical systems, flows on manifolds:

inadequate: does not cover open systems

input/output systems: more promising
aims at open systems, interconnections

bondgraphs: aims at physical interconnections
and energy considerations
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Input/output systems

Building blocks:

input/output:
Recognize input and output variables (“cause and effect”)
Model the input-to-output map or relation

input/state/output:
Recognize input, output, and state variables
Model the input-to-state and the state-to-output maps

Interconnections:
Identify inputs with outputs
Combine series and feedback connection ( SIMULINK)
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Beautiful concepts, very effective algorithms, but i/o is simply

not suitable as a ‘first principles’ starting point.

For building blocks:

Terminal variables are localized System
A physical system is not a signal processor.

But: even CS and DES do not use the i/o approach!

For interconnected systems:

It is not feasible to recognize the signal flow graph before we have a
model. The signal flow graph should be deduced from a model!

More suitable approach for dealing with interconnections Bondgraphs.
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The inappropriateness of input - to - output connections is illustrated
well by the following simple 2-tank physical example:

Logical choice of inputs: the pressures ,
and of outputs: the flows
( : state variables)

In any case, the input/output choice should be ‘symmetric’.
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Interconnection constraints:

Equates two inputs and two outputs.

equating inputs with outputs.
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A new set of concepts is needed !
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BEHAVIORAL SYSTEMS

A system :=

the set of independent variables
time, space, time and space

the set of dependent variables
(= where the variables take on their values),
signal space, space of field variables,

: the behavior = the admissible trajectories
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for a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

A system an exclusion law.
It tells what phenomena can happen, according to the model.

Usually: is specified as the set of solutions of a set of
differential equations.
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Use in modeling interconnected systems
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Solid bar

Terminals: mechanical 2-D terminals.

Variables: .

Parameters: (length),
(mass per unit length).
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Behavioral equations:

Note: Contains latent variables .
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This defines a system with

= solutions
of the ODE’s, suitably interpreted.
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Hinge with servo

3

2

1 4

Terminals: mechanical 2-D terminals, 2 electrical.

Variables:

Parameters: the rotor mass , the stator mass ,
the rotor inertia , the stator inertia ,
the inductance , the resistance of the motor circuit,
the motor torque constant .
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Behavioral equations:

Note: The motor torque is a latent variable.

29



This defines a system with

= solutions

of the ODE’s, suitably interpreted.
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The cart with double pendulum

The list of the modules and the associated terminals:

Module Type Terminals Parameters

Link 1 bar (7,8) ,

Link 2 bar (1,2) ,

Cart bar (13,14) ,

Servo 1 servo (9,10,11,12)

Servo 2 servo (3,4,5,6 )
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The interconnection architecture:

Pairing

Manifest variable assignment:

the variables on the external terminals 1, 5, 6, 11, 12, 14 .

Equations for the full behavior:
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Equations of the modules:
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Interconnection equations:
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The behavioral approach lends itself also to some

real mathematics

Notation:

Ring of real polynomials in n variables .

.
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In the remainder of this lecture, we consider systems

with

often, , independent variable time,
or , independent variables ,

solutions of a system of constant coefficient
linear ODE’s or PDE’s.
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Linear differential systems (PDE’s)

independent variables,
dependent variables,

the solutions of a linear constant coefficient system of PDE’s.

Let and consider

Define its behavior

holds =

mainly for convenience, but important for some results.
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Notation:

or

‘kernel representation’.
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An example: Maxwell’s equations

(time and space),

(electric field, magnetic field, current density, charge density),
,

the set of solutions to Maxwell’s equations.

Note: 10 variables, 8 equations! free variables.
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Three representation results

Relation with sub-modules of

Elimination theorem

Controllability and image representations
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defines , but not vice-versa!

¿¿ ‘intrinsic’ characterization of

Define the annihilators of by

is clearly a sub-module of

Let denote the sub-module of spanned by the
transposes of the rows of . Obviously . But, in fact:

Therefore

sub-modules of
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Elimination

First principles modeling usually requires auxiliary variables
(state variables, interconnection variables, etc.). This invariably leads
(perhaps after linearization) to modeling equations of the form:

‘manifest’ variables,
‘latent’ variables,

and suitably sized polynomial matrices in variables.

We view as a model for the behavior of the variables .
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Define the manifest behavior of as

holds

i.e.,

Does belong to ?

Theorem: It does!

Proof: Fundamental principle.

Algorithm: Syzygies, Gröbner bases, computer algebra.
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Which PDE’s describe ( ) in Maxwell’s equations ?

Eliminate from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

Elimination theorem this exercise would be exact & successful.
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Controllability

Definition: is said to be

controllable

if for all and
for all , non-overlapping closure,

there exists such that and

Controllability the elements of are ‘patch-able’.

Special case: Kalman controllability for input/state systems.
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In pictures:
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Conditions for controllability

Representations of :

called a ‘kernel’ representation of ;

called a ‘latent variable’ representation of the manifest behavior
.

Missing link:

called an ‘image’ representation of
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Elimination theorem
every image (of a linear constant coefficient PDO) is also a kernel.

¿¿ Which kernels are also images ??

Theorem: The following are equivalent for

1. is controllable,

2. admits an image representation,

3. for any
equals or all of ,

4. is torsion free,

etc.

Algorithm: + syzygies + Gröbner basis numerical test on coefficients of .
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential and
the vector potential , generate exactly the solutions
to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!

51



Summary

The i/s/o paradigm is inadequate for first principles modeling.
It fails in the first examples, it is unsuited for interconnection, for
modularity, for object-oriented modeling.

Universal paradigm: BEHAVIORAL SYSTEMS.

closed under intersection, addition, and projection.

Linear shift-invariant differential systems
sub-modules of .

Controllability sub-module is torsion-free.

extensive theory, adapted to modeling, covering all the
classical results, unifying physical models with DES, etc.
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More information?

Surf to

http://www.math.rug.nl/ willems
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THANK YOU

&

BESTWISHES TO YOU, INGE !
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