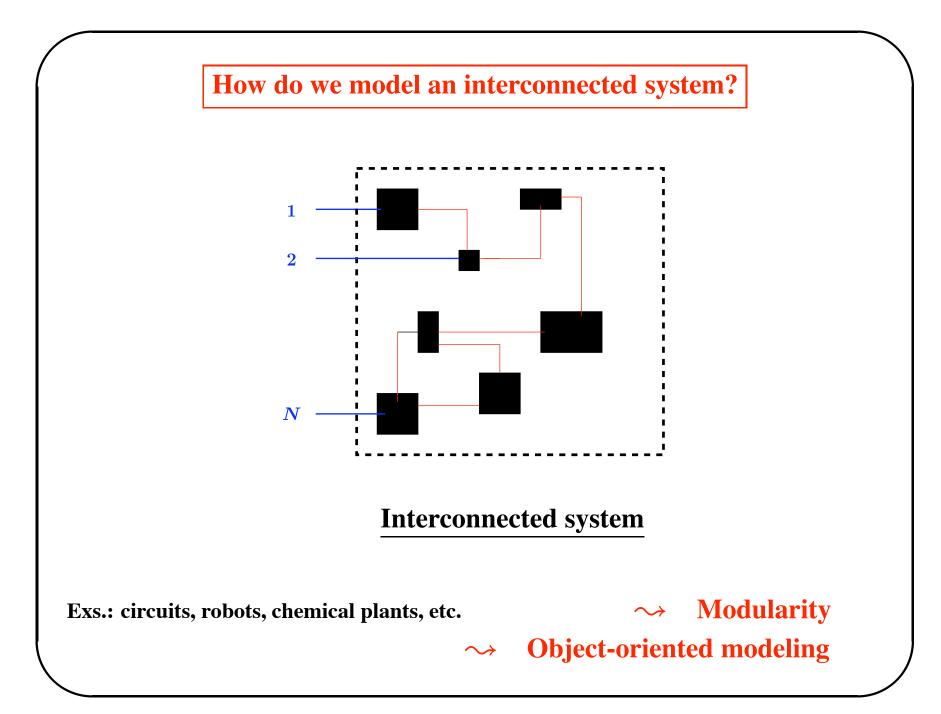
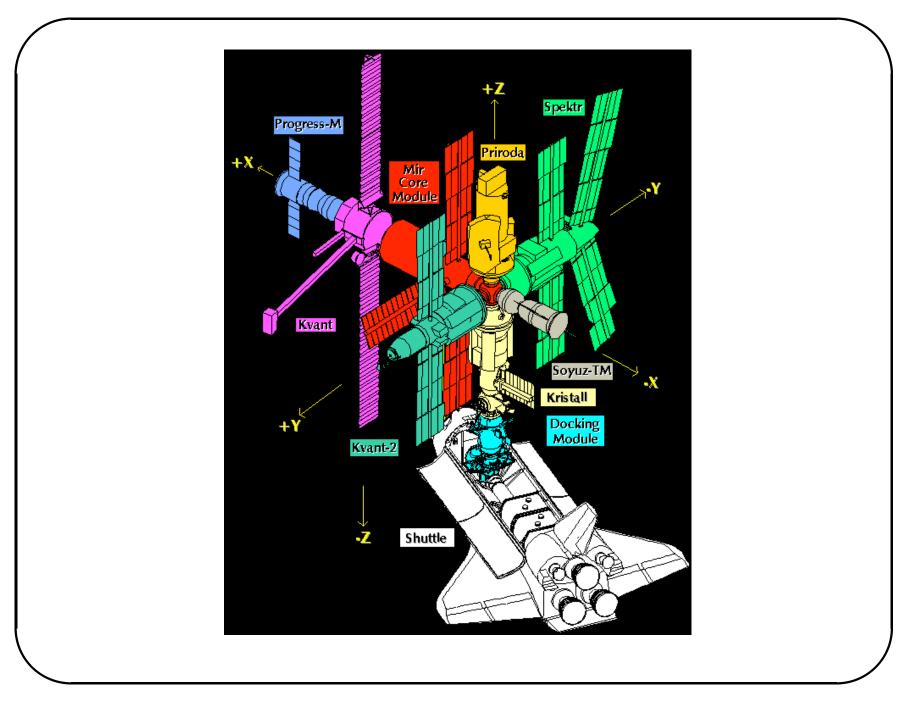
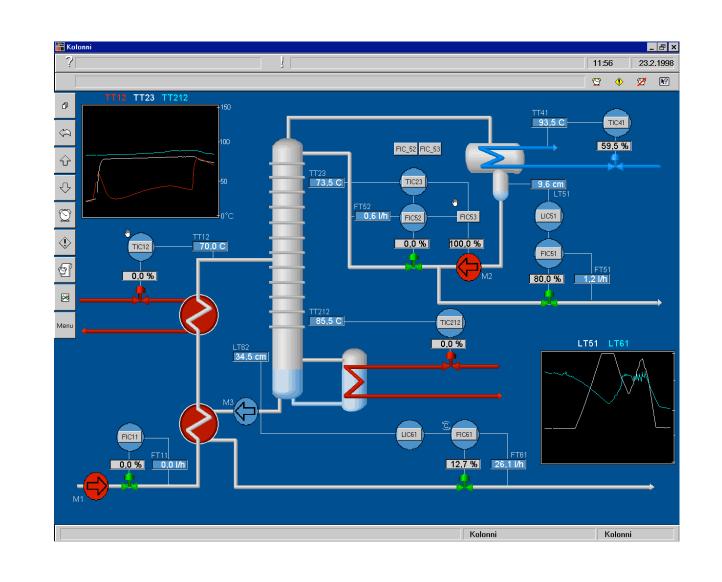


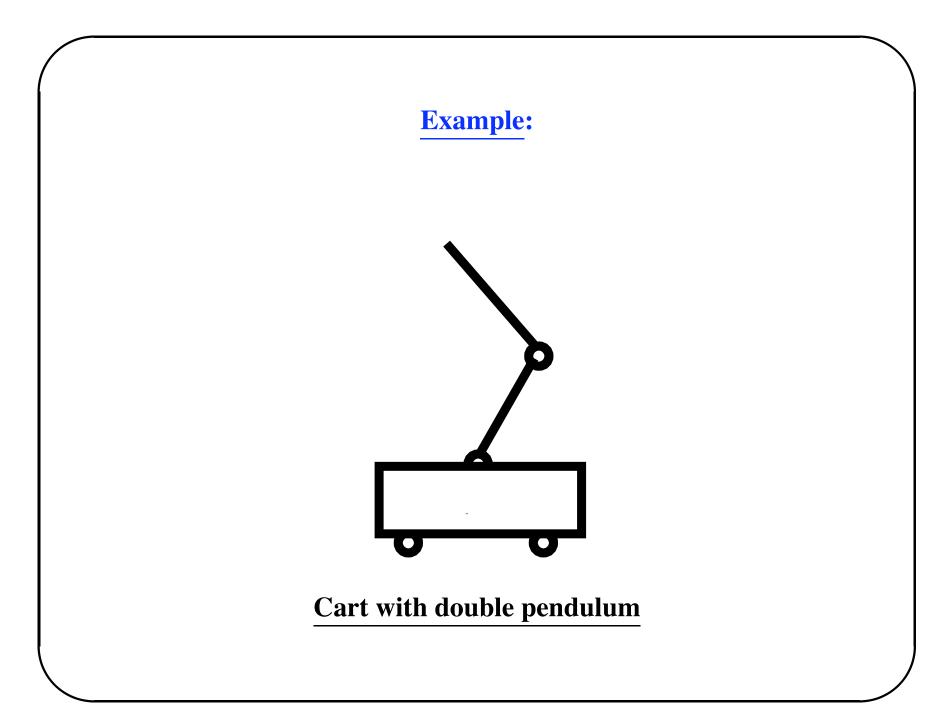
In honor of Inge Troch

on the occasion of her sixtieth birthday

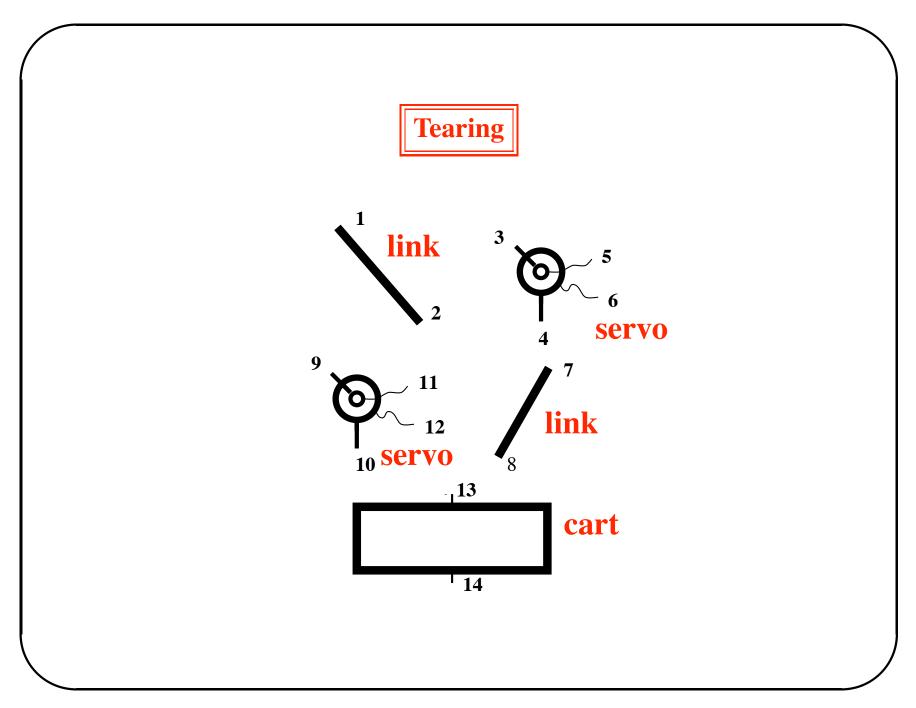


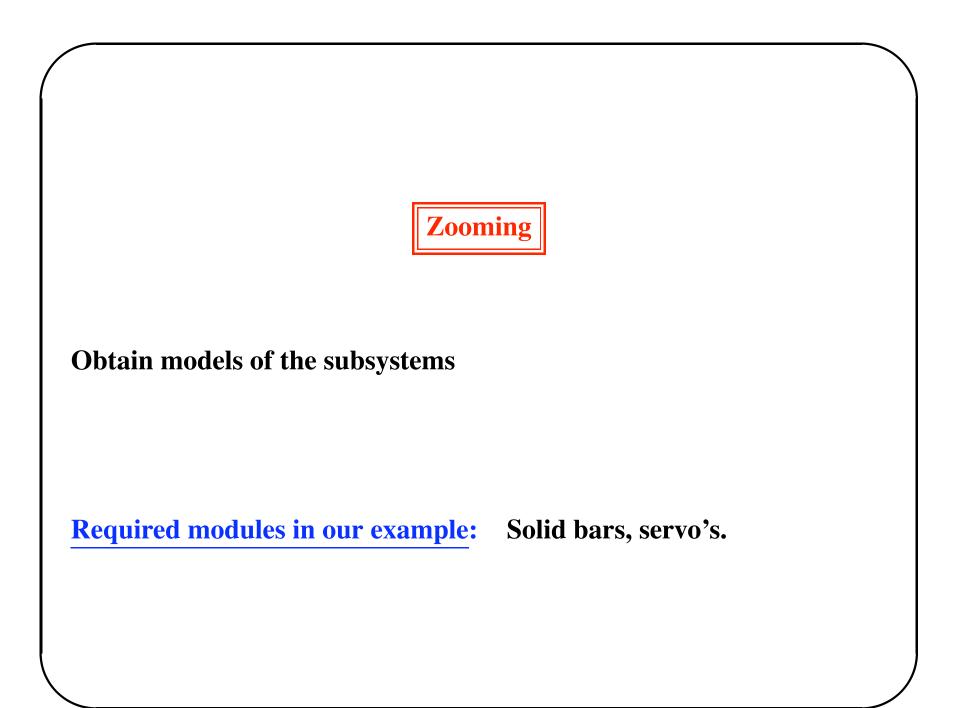


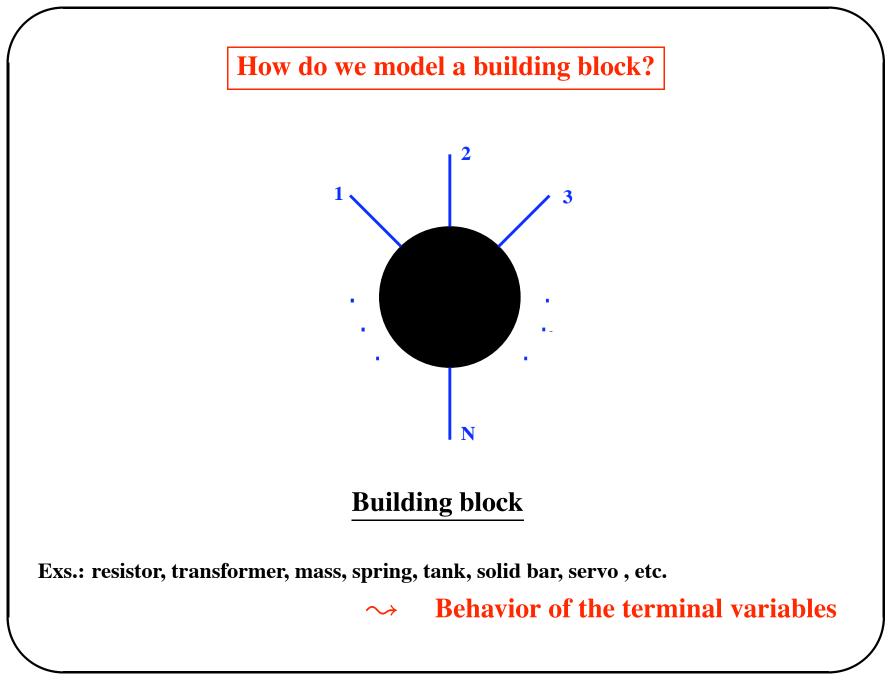




TEARING & ZOOMING

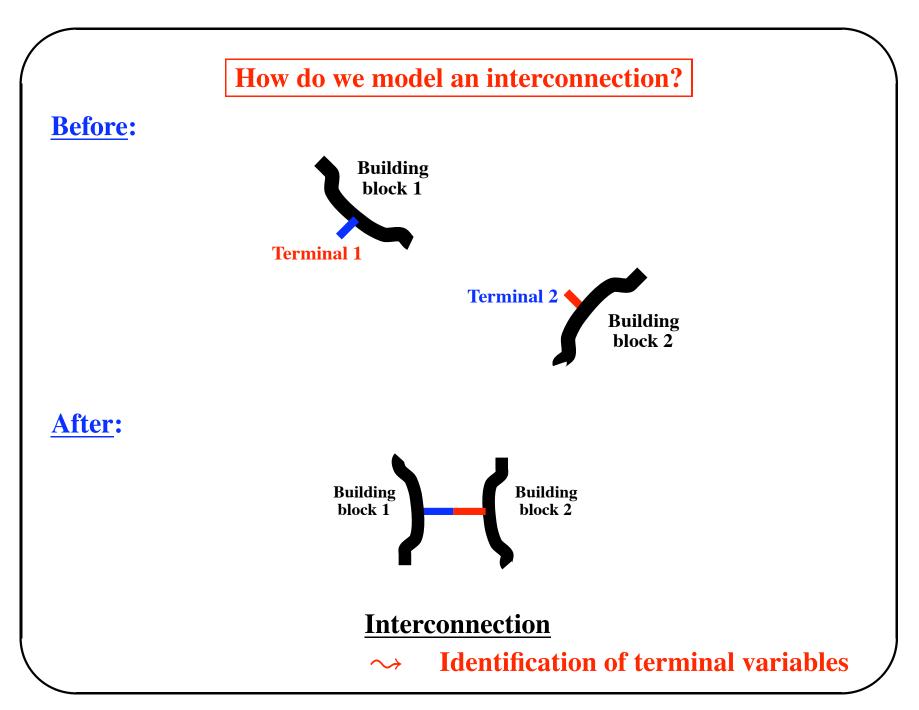






Examples of terminals and terminal variables:

Type of terminal	Variables	Signal space
electrical	(voltage, current)	\mathbb{R}^2
mechanical (1-D)	(force, position)	\mathbb{R}^2
mechanical (2-D)	((position, attitude),	$(\mathbb{R}^2 imes S^1)$
	(force, torque))	$ imes (\mathbb{R}^2 imes T^*S^1)$
mechanical (3-D)	((position, attitude),	$(\mathbb{R}^2 imes S^2)$
	(force, torque))	$ imes (\mathbb{R}^2 \! imes \! T^* S^2)$
thermal	(temp., heat flow)	\mathbb{R}^2
fluidic	(pressure, flow)	\mathbb{R}^2
fluidic - thermal	(pressure, flow,	\mathbb{R}^4
	temp., heat flow)	



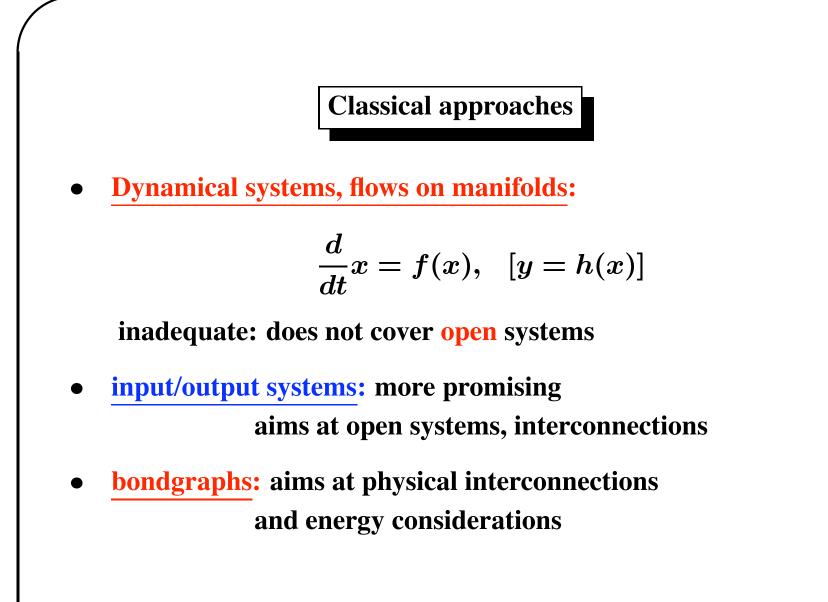
Examples of interconnection equations:

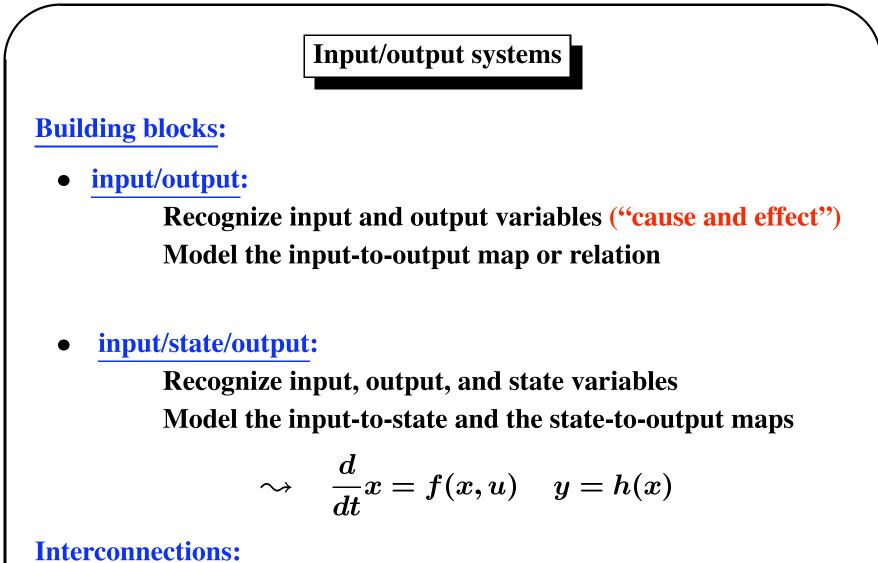
Pair of terminals	Terminal 1	Terminal 2	Interconnection law
electrical	(V_1,I_1)	(V_2,I_2)	$V_1 = V_2, I_1 + I_2 = 0$
1-D mech.	(F_1,q_1)	(F_2,q_2)	$ig F_1 + F_2 = 0, q_1 = q_2$
2-D mech.			
thermal	(T_1,Q_1)	(T_2,Q_2)	$ig T_1 = T_2, Q_1 + Q_2 = 0$
fluidic	(p_1,f_1)	(p_2,f_2)	$p_1 = p_2, f_1 + f_2 = 0$
fluidic -	$(p_1, f_1,$	$(p_2, f_2,$	$p_1=p_2, f_1+f_2=0,$
thermal	$T_1,Q_1)$	$T_2,Q_2)$	$ig T_1 = T_2, Q_1 + Q_2 = 0$

How do we approach such modeling tasks?

Approach should:

- be pedagogically convincing
- be computer oriented
- use mathematical language, with appropriate concepts
- aim at physical systems
- deal with interconnection without apologies
- be adapted to first principles models
- include dynamics, as well as space-time phenomena





Identify inputs with outputs

Combine series and feedback connection (\rightarrow SIMULINK)

Beautiful concepts, very effective algorithms, but i/o is simply

not suitable as a 'first principles' starting point.

For building blocks:

Terminal variables are localized $\neq \Rightarrow$ System \Rightarrow A physical system is not a signal processor.

But: even CS and DES do not use the i/o approach!

For interconnected systems:

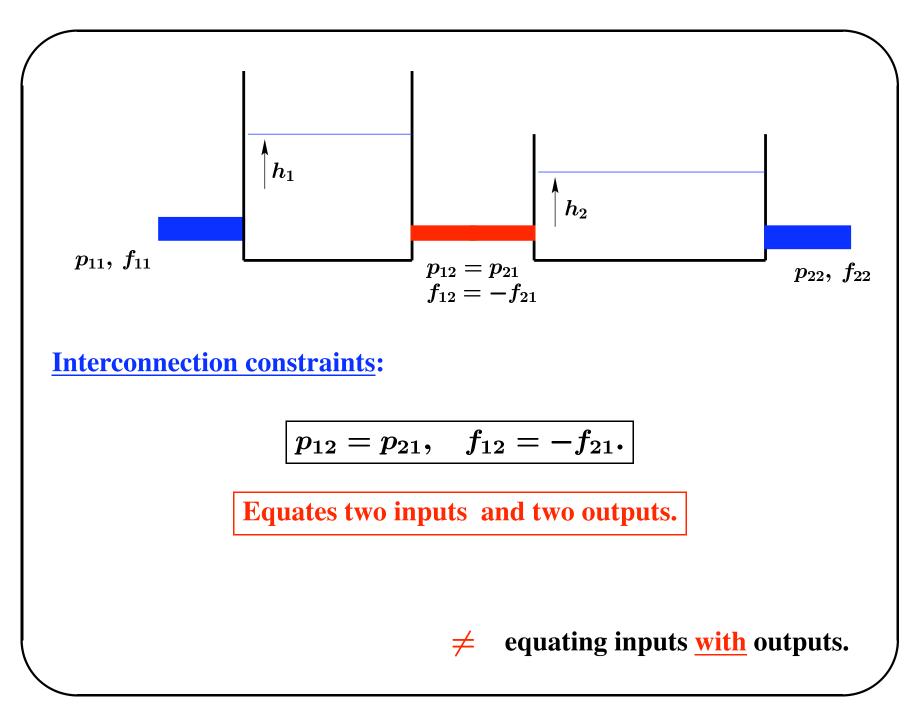
It is *not feasible to recognize the signal flow graph* before we have a model. The signal flow graph should be **deduced** from a model!

More suitable approach for dealing with interconnections \rightarrow **Bondgraphs.**

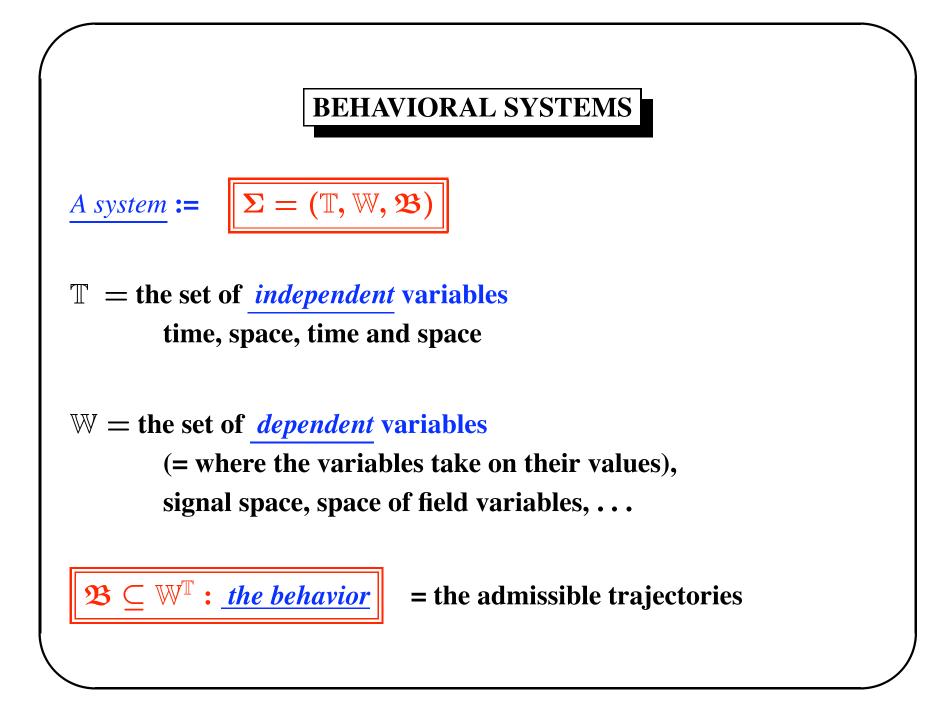
The **inappropriateness** of input - to - output connections is illustrated well by the following simple 2-tank physical example:

Logical choice of inputs: the pressures $p_{11}, p_{12}, p_{21}, p_{22}$, and of outputs: the flows $f_{11}, f_{12}, f_{21}, f_{22}$ $(h_1, h_2$: state variables)

In any case, the input/output choice should be 'symmetric'.



A new set of concepts is needed !



$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

for a trajectory $w : \mathbb{T} \to \mathbb{W}$, we thus have:

 $w \in \mathfrak{B}$: the model allows the trajectory w,

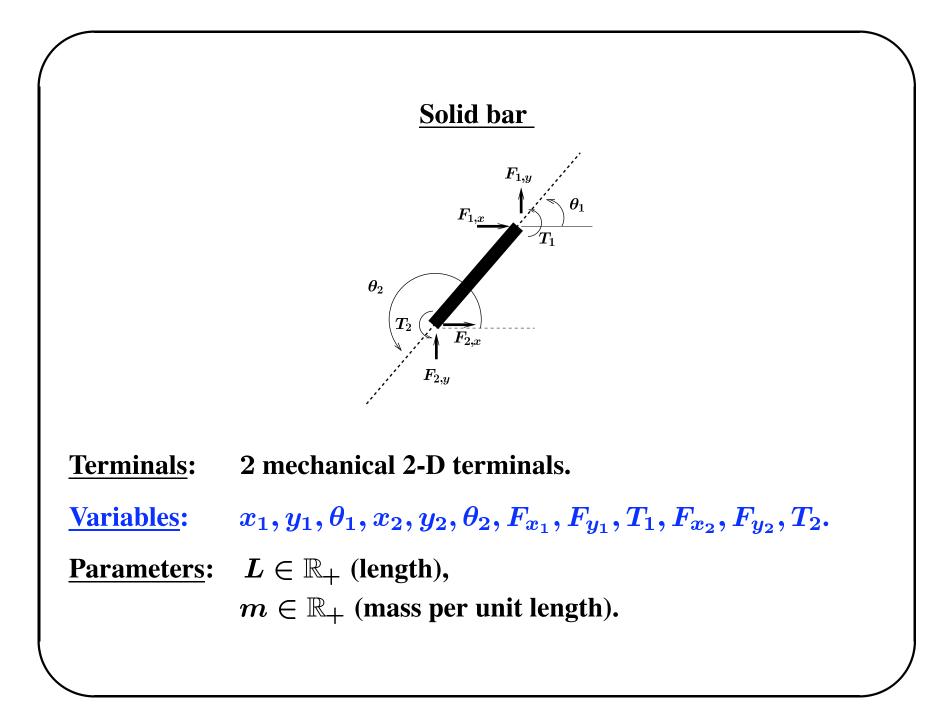
 $w \notin \mathfrak{B}$: the model forbids the trajectory w.

A system \cong an exclusion law.

It tells what phenomena can happen, according to the model.

Usually: 𝔅 is specified as the set of solutions of a set of differential equations.

Use in modeling interconnected systems



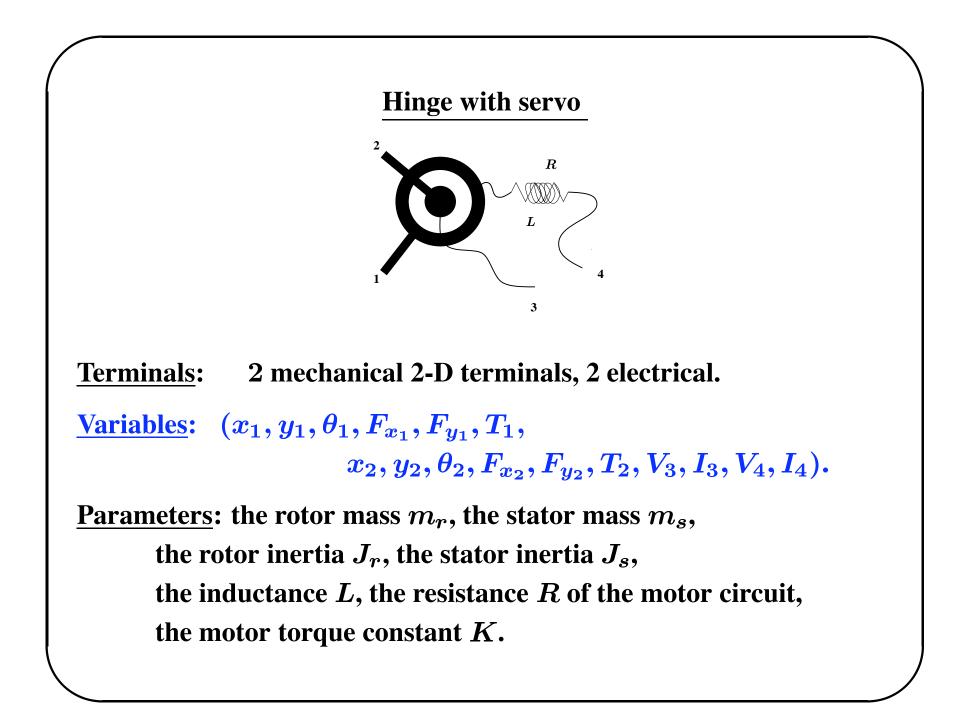
Behavioral equations:

$$\begin{split} mL\frac{d^{2}}{dt^{2}}x_{c} &= F_{x_{1}} + F_{x_{2}}, \\ mL\frac{d^{2}}{dt^{2}}y_{c} &= F_{y_{1}} + F_{y_{2}} - mLg, \\ m\frac{L^{3}}{12}\frac{d^{2}}{dt^{2}}\theta_{c} &= T_{1} + T_{2} - \frac{L}{2}F_{x_{1}}\sin(\theta_{1}) \\ &+ \frac{L}{2}F_{y_{1}}\cos(\theta_{1}) - \frac{L}{2}F_{x_{2}}\sin(\theta_{2}) + \frac{L}{2}F_{y_{2}}\cos(\theta_{2}), \\ \theta_{1} &= \theta_{c}, \\ \theta_{2} &= \theta_{1} + \pi, \\ x_{1} &= x_{c} + \frac{L}{2}\cos(\theta_{c}), \\ x_{2} &= x_{c} - \frac{L}{2}\cos(\theta_{c}), \\ y_{1} &= y_{c} + \frac{L}{2}\sin(\theta_{c}), \\ y_{2} &= y_{c} - \frac{L}{2}\sin(\theta_{c}). \end{split}$$

<u>Note</u>: Contains latent variables x_c, y_c, θ_c .

This defines a system with

$$T = \mathbb{R}$$
$$W = (\mathbb{R}^2 \times S^1 \times \mathbb{R}^2 \times T^*S^1) \times (\mathbb{R}^2 \times S^1 \times \mathbb{R}^2 \times T^*S^1)$$
$$\mathfrak{B} = \text{solutions} (x_1, y_1, \theta_1, x_2, y_2, \theta_2, F_{x_1}, F_{y_1}, T_1, F_{x_2}, F_{y_2}, T_2)$$
of the ODE's, suitably interpreted.



Behavioral equations:

$$(m_{r} + m_{s})\frac{d^{2}}{dt^{2}}x_{1} = F_{x_{1}} + F_{x_{2}}$$

$$(m_{r} + m_{s})\frac{d^{2}}{dt^{2}}y_{1} = F_{x_{1}} + F_{x_{2}}$$

$$J_{r}\frac{d^{2}}{dt^{2}}\theta_{1} = T_{1} + T_{m}$$

$$J_{s}\frac{d^{2}}{dt^{2}}\theta_{2} = T_{2} - T_{m}$$

$$V_{3} - V_{4} = L\frac{d}{dt}I_{3} + RI_{3} + K\frac{d}{dt}(\theta_{1} - \theta_{2})$$

$$KI_{3} = T_{m}$$

$$x_{1} = x_{2}$$

$$y_{1} = y_{2}$$

$$I_{3} = -I_{4}$$

<u>Note</u>: The motor torque T_m is a latent variable.

This defines a system with

 $\mathbb{T} = \mathbb{R}$ $\mathbb{W} = (\mathbb{R}^2 \times S^1 \times \mathbb{R}^2 \times T^*S^1)^2 \times (\mathbb{R}^2)^2$

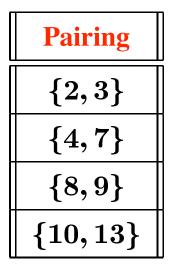
\mathfrak{B} = solutions

 $(x_1, y_1, \theta_1, F_{x_1}, F_{y_1}, T_1, x_2, y_2, \theta_2, F_{x_2}, F_{y_2}, T_2, V_3, I_3, V_4, I_4)$ of the ODE's, suitably interpreted. The cart with double pendulum

The list of the modules and the associated terminals:

Module	Туре	Terminals	Parameters
Link 1	bar	(7,8)	L_1, m_1
Link 2	bar	(1,2)	L_2,m_2
Cart	bar	(13,14)	L_3,m_3
Servo 1	servo	(9,10,11,12)	$igg m_{r_1}, m_{s_1}, J_{r_1}, J_{r_1}, L_1, R_1, K_1$
Servo 2	servo	(3,4,5,6)	$m_{r_2}, m_{s_2}, J_{r_2}, J_{r_2}, L_2, R_2, K_2$

The <u>interconnection architecture</u>:



Manifest variable assignment:

the variables on the external terminals $\{1, 5, 6, 11, 12, 14\}$.

Equations for the full behavior:

Equations of the modules:

$$\begin{split} m_1 L_1 \frac{d^2}{dt^2} x_{c_1} &= F_{x_1} + F_{x_2}, \\ m_1 L_1 \frac{d^2}{dt^2} y_{c_1} &= F_{y_1} + F_{y_2} - m_1 L_1 g, \\ m_1 \frac{L_1^3}{12} \frac{d^2}{dt^2} \theta_{c_1} &= T_1 + T_2 \\ &- \frac{L_1}{2} F_{x_1} \sin(\theta_1) + \frac{L_1}{2} F_{y_1} \cos(\theta_1) - \frac{L_1}{2} F_{x_2} \sin(\theta_2) + \frac{L_1}{2} F_{y_2} \cos(\theta_2), \\ \theta_1 &= \theta_{c_1}, \theta_2 = \theta_1 + \pi, \\ x_1 &= x_{c_1} + \frac{L_1}{2} \cos(\theta_{c_1}), x_2 = x_{c_1} - \frac{L_1}{2} \cos(\theta_{c_1}), \\ y_1 &= y_{c_1} + \frac{L_1}{2} \sin(\theta_{c_1}), y_2 = y_{c_1} - \frac{L_1}{2} \sin(\theta_{c_1}), \end{split}$$

$$\begin{split} m_{2}L_{2}\frac{d^{2}}{dt^{2}}x_{c_{2}} &= F_{x_{7}} + F_{x_{8}}, \\ m_{2}L_{2}\frac{d^{2}}{dt^{2}}y_{c_{2}} &= F_{y_{7}} + F_{y_{8}} - m_{2}L_{2}g, \\ m_{2}\frac{L_{2}^{3}}{12}\frac{d^{2}}{dt^{2}}\theta_{c_{2}} &= T_{7} + T_{8} \\ &- \frac{L_{2}}{2}F_{x_{7}}\sin(\theta_{7}) + \frac{L_{2}}{2}F_{y_{7}}\cos(\theta_{7}) - \frac{L_{2}}{2}F_{x_{8}}\sin(\theta_{8}) + \frac{L_{2}}{2}F_{y_{8}}\cos(\theta_{8}), \\ \theta_{7} &= \theta_{c_{2}}, \theta_{8} = \theta_{7} + \pi, \\ x_{7} &= x_{c_{2}} + \frac{L_{1}}{2}\cos(\theta_{c_{2}}), x_{8} = x_{c_{2}} - \frac{L_{1}}{2}\cos(\theta_{c_{2}}), \\ y_{7} &= y_{c_{2}} + \frac{L_{1}}{2}\sin(\theta_{c_{2}}), y_{8} = y_{c_{2}} - \frac{L_{1}}{2}\sin(\theta_{c_{2}}), \end{split}$$

$$\begin{split} m_{3}L_{3}\frac{d^{2}}{dt^{2}}x_{c_{3}} &= F_{x_{13}} + F_{x_{14}}, \\ m_{3}L_{3}\frac{d^{2}}{dt^{2}}y_{c_{3}} &= F_{y_{13}} + F_{y_{14}} - m_{3}L_{3}g, \\ m_{3}\frac{L_{3}^{3}}{12}\frac{d^{2}}{dt^{2}}\theta_{c_{3}} &= T_{13} + T_{14} \\ &- \frac{L_{3}}{2}F_{x_{13}}\sin(\theta_{13}) + \frac{L_{3}}{2}F_{y_{13}}\cos(\theta_{13}) - \frac{L_{3}}{2}F_{x_{14}}\sin(\theta_{14}) + \frac{L_{3}}{2}F_{y_{14}}\cos(\theta_{14}), \\ \theta_{13} &= \theta_{c_{3}}, \theta_{14} = \theta_{c_{3}} + \pi, \\ x_{13} &= x_{c_{3}} + \frac{L_{1}}{2}\cos(\theta_{c_{3}}), \\ x_{14} &= x_{c_{3}} - \frac{L_{1}}{2}\cos(\theta_{c_{3}}), y_{13} = y_{c_{3}} + \frac{L_{1}}{2}\sin(\theta_{c_{3}}), \\ y_{14} &= y_{c_{3}} - \frac{L_{1}}{2}\sin(\theta_{c_{3}}), \end{split}$$

$$\begin{split} (m_{r_1} + m_{s_1}) \frac{d^2}{dt^2} x_3 &= F_{x_3} + F_{x_4}, \\ (m_{r_1} + m_{s_1}) \frac{d^2}{dt^2} y_3 &= F_{y_3} + F_{y_4}, \\ J_{r_1} \frac{d^2}{dt^2} \theta_3 &= T_3 + T_m, \\ J_{s_1} \frac{d^2}{dt^2} \theta_4 &= T_4 - T_m, \\ V_5 - V_6 &= L_1 \frac{d}{dt} I_5 + R_1 I_5 + K \frac{d}{dt} (\theta_3 - \theta_4), \\ K_1 I_5 &= T_{m_1}, x_3 = x_4, y_3 = y_4, I_5 = -I_6, \end{split}$$

$$\begin{split} (m_{r_2} + m_{s_2}) \frac{d^2}{dt^2} x_9 &= F_{x_9} + F_{x_{10}}, \\ (m_{r_2} + m_{s_2}) \frac{d^2}{dt^2} y_9 &= F_{y_9} + F_{y_{10}}, \\ J_{r_2} \frac{d^2}{dt^2} \theta_9 &= T_9 + T_m, \\ J_{s_2} \frac{d^2}{dt^2} \theta_{10} &= T_{10} - T_m, \\ V_{11} - V_{12} &= L_2 \frac{d}{dt} I_{11} + R_2 I_{11} + K \frac{d}{dt} (\theta_9 - \theta_{10}), \\ K_2 I_{11} &= T_{m_2}, x_{10} = x_{11}, y_{10} = y_{11}, I_{11} = -I_{12}, \end{split}$$

Interconnection equations:

$$\begin{split} F_{x_2} + F_{x_3} &= 0, \ F_{y_2} + F_{y_3} = 0, \ x_2 = x_3, \ y_2 = y_3, \ \theta_2 = \theta_3 + \pi, \ T_2 + T_3 = 0, \\ F_{x_4} + F_{x_7} &= 0, \ F_{y_4} + F_{y_7} = 0, \ x_4 = x_7, \ y_4 = y_7, \ \theta_4 = \theta_7 + \pi, \ T_4 + T_7 = 0, \\ F_{x_8} + F_{x_9} &= 0, \ F_{y_8} + F_{y_9} = 0, \ x_8 = x_9, \ y_8 = y_9, \ \theta_8 = \theta_9 + \pi, \ T_8 + T_9 = 0, \\ F_{x_{10}} + F_{x_{13}} &= 0, \ F_{x_{10}} + F_{x_{13}} = 0, \ x_{10} = x_{13}, \ y_{10} = y_{13}, \\ \theta_{10} &= \theta_{13} + \pi, \ T_{10} + T_{13} = 0. \end{split}$$

real mathematics

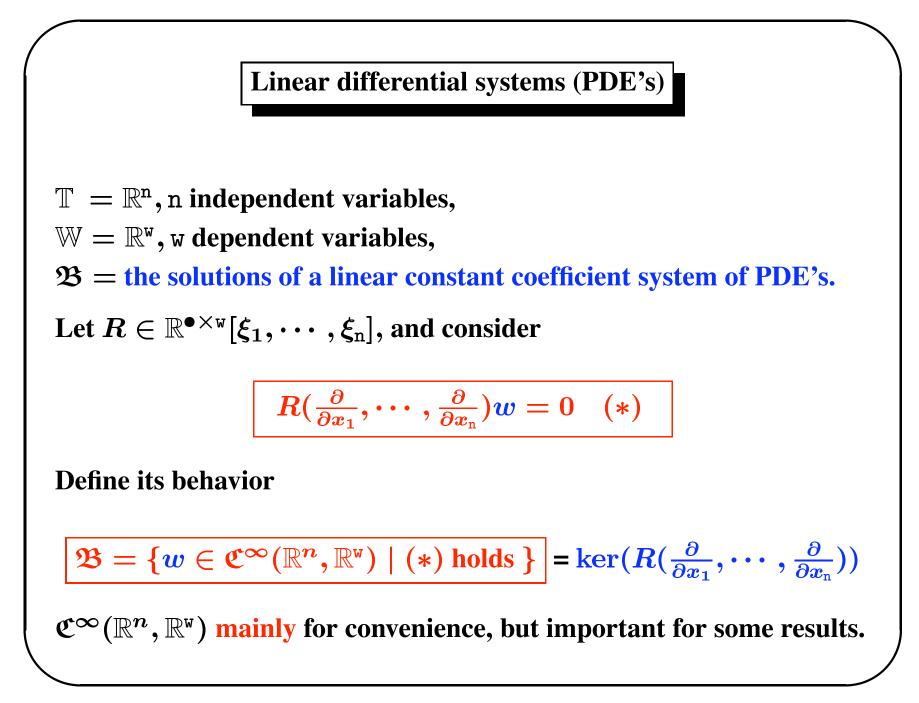
Notation:

Ring of real polynomials in n variables $\rightarrow \mathbb{R}[\xi_1, \dots, \xi_n]$. $\mathbb{R}^n[\xi_1, \dots, \xi_n], \mathbb{R}^{\bullet}[\xi_1, \dots, \xi_n], \mathbb{R}^{n_1 \times n_2}[\xi_1, \dots, \xi_n],$ $\mathbb{R}^{\bullet \times n}[\xi_1, \dots, \xi_n], \mathbb{R}^{n \times \bullet}[\xi_1, \dots, \xi_n],$ $\mathbb{R}^{\bullet \times \bullet}[\xi_1, \dots, \xi_n].$ In the remainder of this lecture, we consider systems

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

with

 $\mathbb{T} = \mathbb{R}^{n}, \quad \mathbb{W} = \mathbb{R}^{w},$ $w : \mathbb{R}^{n} \to \mathbb{R}^{w}, (w_{1}(x_{1}, \cdots, x_{n}), \cdots, w_{w}(x_{1}, \cdots, x_{n})),$ often, n = 1, independent variable time, or n = 4, independent variables (t, x, y, z), \mathfrak{B} = solutions of a system of constant coefficient linear ODE's or PDE's.



Notation:

$$(\mathbb{R}^n,\mathbb{R}^{w},\mathfrak{B})\in\mathfrak{L}_{\mathrm{n}}^{w}, \quad \mathrm{or}\ \mathfrak{B}\ \in\mathfrak{L}_{\mathrm{n}}^{w},$$

$$\mathfrak{B} = \ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})).$$

'kernel representation'.

An example: Maxwell's equations

$$egin{aligned}
abla \cdot ec{E} &=& rac{1}{arepsilon_0}
ho \,, \
abla & imes ec{E} &=& -rac{\partial}{\partial t} ec{B}, \
abla & imes ec{B} &=& 0 \,, \ c^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E}. \end{aligned}$$

 $\mathbb{T} = \mathbb{R} \times \mathbb{R}^3 \text{ (time and space),}$ $w = (\vec{E}, \vec{B}, \vec{j}, \rho)$

(electric field, magnetic field, current density, charge density), $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$,

 $\mathfrak{B} \in \mathfrak{L}_4^8$: the set of solutions to Maxwell's equations.

<u>Note</u>: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

Three representation results

- Relation with sub-modules of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$
- Elimination theorem
- **Controllability and image representations**

R defines $\mathfrak{B} = \ker(R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))$, but not vice-versa!

;; \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_n^{w}$??

Define the *annihilators* of B by

 $\mathfrak{N}_{\mathfrak{B}}$ is clearly a sub-module of $\mathbb{R}^{\mathsf{w}}[\xi_1, \cdots, \xi_n]$.

Let $\langle R \rangle$ denote the sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$ spanned by the transposes of the rows of R. Obviously $\langle R \rangle \subseteq \mathfrak{N}_{\mathfrak{B}}$. But, in fact:

$$\mathfrak{N}_{\mathfrak{B}} = < R >$$

Therefore

$$\mathfrak{L}_{n}^{\mathtt{w}} \stackrel{1:1}{\longleftrightarrow}$$
sub-modules of $\mathbb{R}^{\mathtt{w}}[\xi_{1}, \cdots, \xi_{n}]$

Elimination

First principles modeling usually requires auxiliary variables (state variables, interconnection variables, etc.). This invariably leads (perhaps after linearization) to modeling equations of the form:

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}) w = M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}) oldsymbol{\ell}$$
 (**)

 $w \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{w})$ 'manifest' variables, $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{\ell})$ 'latent' variables,

R and M suitably sized polynomial matrices in n variables.

We view (**) as a model for the behavior of the variables w.

Define the *manifest behavior* **of (**) as**

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{\scriptscriptstyle W}) \mid \exists \ \ell \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{\ell}) : (**) \text{ holds } \}$$

i.e.,
$$\mathfrak{B} = (R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))^{-1} M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\ell}).$$

Does \mathfrak{B} belong to \mathfrak{L}_n^{w} ?

Theorem: It does!

<u>Proof</u>: Fundamental principle.

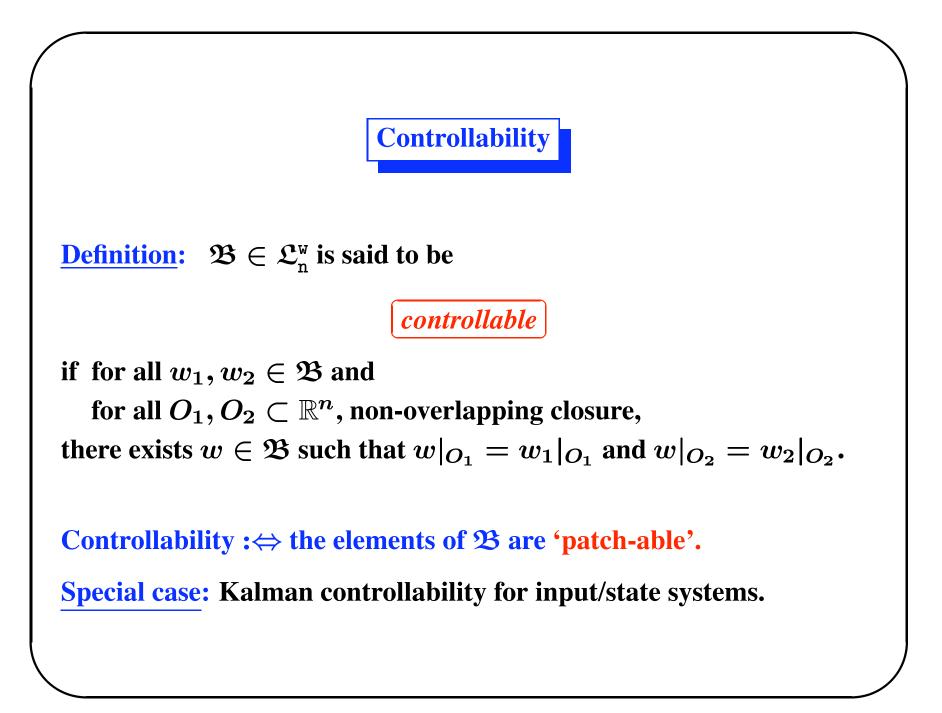
Algorithm: Syzygies, Gröbner bases, computer algebra.

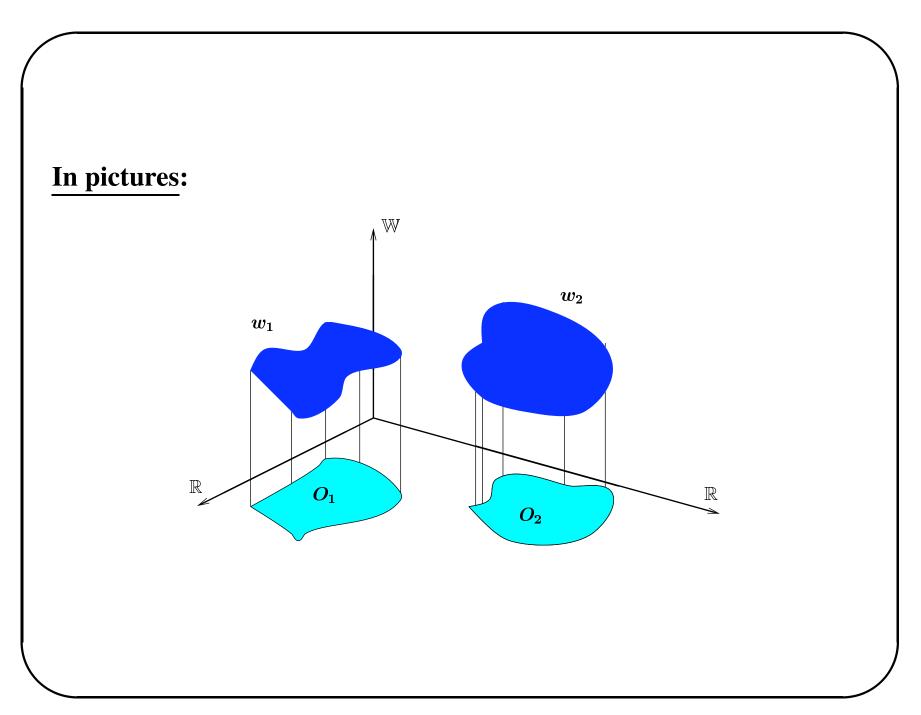
Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations ?

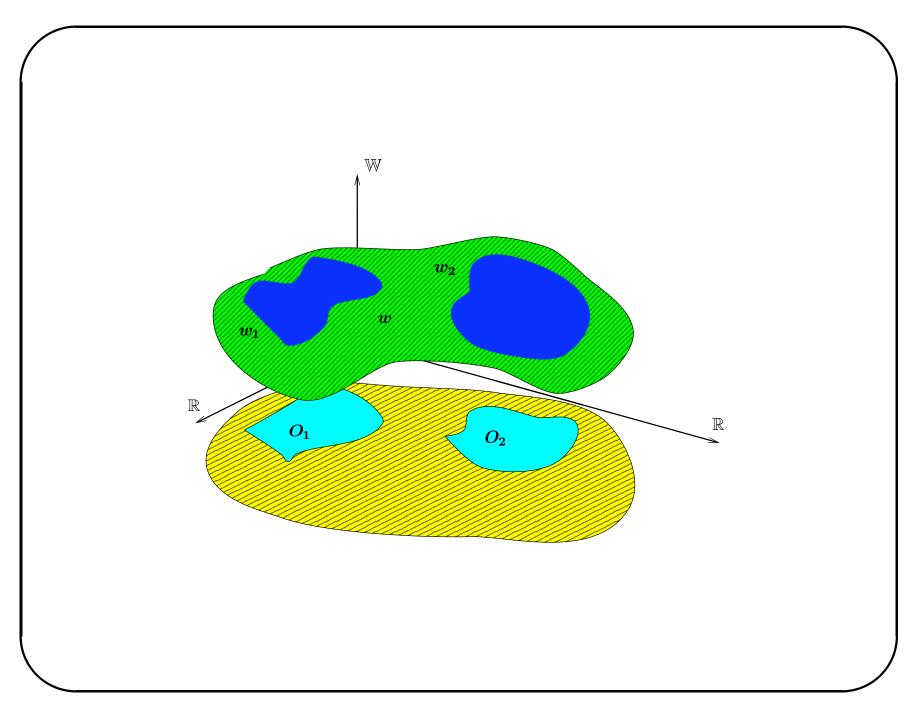
Eliminate \vec{B} , ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$egin{aligned} arepsilon_0 & rac{\partial}{\partial t}
abla \cdot ec{E} \,+\,
abla \cdot ec{j} &= 0, \ & ec{c}_0 & rac{\partial^2}{\partial t^2} ec{E} \,+\, arepsilon_0 c^2
abla imes
abla imes ec{E} \,+\, rac{\partial}{\partial t} ec{j} &= 0. \end{aligned}$$

Elimination theorem \Rightarrow this exercise would be exact & successful.







Conditions for controllability

Representations of \mathfrak{L}_n^w **:**

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})oldsymbol{w}=0$$
 (*)

called a *'kernel' representation* of $\mathfrak{B} = \ker(R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}));$

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}) w = M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}) \ell \quad (**)$$

called a *'latent variable' representation* of the manifest behavior $\mathfrak{B} = (R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))^{-1} M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\ell}).$

$$\underline{\text{Missing link:}} \quad \pmb{w} = M(\tfrac{\partial}{\partial x_1}, \cdots, \tfrac{\partial}{\partial x_n})\ell \quad (***)$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$

Elimination theorem \Rightarrow

every image (of a linear constant coefficient PDO) is also a kernel.

¿¿ Which kernels are also images ??

<u>Theorem</u>: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_n^{w}$:

- 1. 33 is controllable,
- 2. **B** admits an image representation,

3. for any
$$a \in \mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}],$$

 $a^{\top}[\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}]\mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}),$

4. $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]/\mathfrak{N}_{\mathfrak{B}}$ is torsion free,

etc.

Algorithm: R + syzygies + Gröbner basis \Rightarrow numerical test on coefficients of R.

Are Maxwell's equations controllable ?

The following equations in the *scalar potential* $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the *vector potential* $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$egin{aligned} ec{E} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{B} &=&
abla imes ec{A}, \ ec{j} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla (
abla \cdot ec{A}) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \ ec{
ho} &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ **potential!**

Summary

- The i/s/o paradigm is inadequate for first principles *modeling*. It fails in the first examples, it is unsuited for interconnection, for *modularity*, for object-oriented modeling.
- Universal paradigm: **BEHAVIORAL SYSTEMS**.
- \mathfrak{L}_n^w closed under intersection, addition, and projection.
- Linear shift-invariant differential systems $\stackrel{1:1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n].$
- Controllability \Leftrightarrow *sub-module* is torsion-free.
- ∃ extensive theory, adapted to modeling, covering all the classical results, unifying physical models with DES, etc.

More information?

Surf to

http://www.math.rug.nl/~willems

