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How do we model an interconnected system?

Interconnected system

Exs.: circuits, robots, chemical plants, etc. ~>  Modularity

N

~» Object-oriented modeling /
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Example:

Cart with double pendulum
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Zooming

Obtain models of the subsystems

Required modules in our example: Solid bars, servo’s.
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How do we model a building block?

N

Building block

Exs.: resistor, transformer, mass, spring, tank, solid bar, servo , etc.

N

~»> Behavior of the terminal variables
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Gxamples of terminals and terminal variables:

(force, torque))

Type of terminal Variables Signal space

electrical (voltage, current) R?

mechanical (1-D) (force, position) R?

mechanical (2-D) ((position, attitude), | (R? x S1)
(force, torque)) X (R? x T*S1)

mechanical (3-D) ((position, attitude), | (R? x S?)

temp., heat flow)

thermal (temp., heat flow) R?
fluidic (pressure, flow) R?
fluidic - thermal (pressure, flow, R4
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/ How do we model an interconnection? \

Before:
Building
block 1
Terminal 1
Terminal 2
Building
block 2
After:
Building Building
block 1 block 2
Interconnection
\ ~» Identification of terminal Variables/
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Examples of interconnection equations:

Pair of Terminal | Terminal Interconnection law

terminals 1 2

electrical (V1,I1) (Va, I3) Vi=Vo,I; +1I,=0

1-D mech. | (Fi,q1) (F2,q-2) Fy + F> = 0,91 = q2

2-D mech.

thermal (T1,Q1) | (I2,Q2) T, =T5,Q:1 + Q2 =0

fluidic (P1, f1) (P2, f2) P1=p2,f1+ f2=0

fluidic - (P15 f1, (P25 f2, p1 = p2, f1 + f2 =0,
thermal T1,Q1) T,Q2) Ty, =T5,Q:1 + Q2 =0

\_

/
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‘How do we approach such modeling tasks? I
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Approach should:

e be pedagogically convincing

e be computer oriented

e use mathematical language, with appropriate concepts
e aim at physical systems

e deal with interconnection without apologies

e be adapted to first principles models

e include dynamics, as well as space-time phenomena
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‘ Classical approaches I

Dynamical systems, flows on manifolds:

d

So=f(@) ly=h)

inadequate: does not cover open systems

input/output systems: more promising

aims at open systems, interconnections

bondgraphs: aims at physical interconnections

and energy considerations
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/ Input/output systems I \

Building blocks:

e input/output:

Recognize input and output variables (‘“‘cause and effect”)
Model the input-to-output map or relation

e input/state/output:
Recognize input, output, and state variables

Model the input-to-state and the state-to-output maps

~ %w = f(z,u) y=h(z)

Interconnections:

Identify inputs with outputs
\ Combine series and feedback connection ( ~~ SIMULINK)/
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Geautiful concepts, very effective algorithms, but i/0 is simply

not suitable as a ‘first principles’ starting point.

For building blocks:

Terminal variables are localized # System |=-

A physical system is not a signal processor.

But: even CS and DES do not use the i/o0 approach!

For interconnected systems:

It is not feasible to recognize the signal flow graph before we have a
model. The signal flow graph should be deduced from a model!

Q/Iore suitable approach for dealing with interconnections ~» Bondgraphs.

~

/
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4 N

The inappropriateness of input - to - output connections is illustrated
well by the following simple 2-tank physical example:

2 |

— o . e

P11, f11 - D12, f12 D21, fo1 D22, fo2

Logical choice of inputs: the pressures p11, P12, P21, P22,
and of outputs: the flows f11, fi2, f21, f22
(h1, ho: state variables)

In any case, the input/output choice should be ‘symmetric’.

N /
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—

P11, Ju1

Interconnection constraints:

N
L

P12 = P21 P22, fo2
fiz2 = —fa

P12 = P21, Ji2 = —Jfa1.

Equates two inputs and two outputs.

#+ equating inputs with outputs./
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A new set of concepts is needed ! I

21
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BEHAVIORAL SYSTEMS '

A system:= X = (T, W, )

T = the set of independent variables

time, space, time and space

W = the set of dependent variables

(= where the variables take on their values),
signal space, space of field variables, . ..

B C W' : the behavior|| = the admissible trajectories

\_

22



4 )
‘Ez(T,W,%)I

for a trajectory w : T — W, we thus have:

w € 5 : the model the trajectory w,
w & B : the model forbids the trajectory w.

A system = an exclusion law.
It tells what phenomena can happen, according to the model.

Usually: B is specified as the set of solutions of a set of
differential equations.

o /
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Use in modeling interconnected systems I

24




Solid bar

Fl,y

Terminals: 2 mechanical 2-D terminals.

Variables: L1sY1, 01, L2 Y2, 02, le, Fyl ) Tl, sz, F’y27 1.

Parameters: L € R, (length),
m € R4 (mass per unit length).

o /
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Behavioral equations:

detzwc — le + szv
mL-2 Tz Ye = F,, + F,, — mLg,
mL—sd—zec = T1 -+ Tz — £Fw1 Sin(01)

12 dt2
+ %Fyl cos(61) — —Fw2 sin(63) +
01 — Hc’
02 = 01 + m,

T, = T+ %cos(@c),
Lo = Tp — %cos(@c),
Y1 = Ye + %Sin(ec)a
Y2 = Ye — %sin(@c).

Note: Contains latent variables =, y., 0..

N

Fy2 cos(63),
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This defines a system with

T=R
W= (R? x ST x R? x T*S!) x (R? x S x R? x T*S1)

B = solutions (1131, Y1, 01, L24 Y2, 02, le, Fy1 ) Tl, sz, F’y27 Tz)
of the ODE'’s, suitably interpreted.

\_
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Hinge with servo

2

R

Terminals: 2 mechanical 2-D terminals, 2 electrical.

Variables: (:131, Y1, 91, le, Fy17 Tl,
L2y Y2, 029 sza F’yza T27 V39 I37 V49 I4)

Parameters: the rotor mass m,., the stator mass mg,

the rotor inertia .J,., the stator inertia J,,
the inductance L, the resistance R of the motor circuit,

the motor torque constant K.

\_
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Behavioral equations:

N

(m, + ms)j—;ml =F,, + F,,
(M + M) Soys = Fo, + Fa,
Jr%‘% =11+ T
Jo 20, =Ty, — T,

V3 — V4 — L%Ig —|— RIg —|— K%(Gl — 02)
KIg — Tm

L1 = L2
Y — Y2
Is = —1,

Note: The motor torque 7', is a latent variable.
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4 N

This defines a system with

T=R
W = (R? x S x R? x T*S1)? x (R?)?
8 = solutions

(2131, Yi, 919 lea Fyla Tla L2y Y2, 029 sza Fyza T29 V39 I39 V49 I4)
of the ODE'’s, suitably interpreted.

o /
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The cart with double pendulum

The list of the modules and the associated terminals:

Module | Type | Terminals Parameters
Link 1 bar (7,8) L1, mq
Link 2 bar (1,2) Lo, mo
Cart bar (13,14) L3, ms
Servo 1 | servo | (9,10,11,12) | m,.,, mg, s Jp, s Jp, s L1, R1, K4
Servo 2 | servo (3,4,5,6 ) My Mg,y Jryy Jpyy Loy Ray Ko

/
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The interconnection architecture:

Pairing
2,3}
14,7}

{8,9}
{10,13}

Manifest variable assignment:

the variables on the external terminals {1, 5, 6, 11, 12, 14}.

Equations for the full behavior:

N /
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ﬁluations of the modules:

01 = 0c1902 = 01 + m,
L L
x1 = ®c, + 21 cos(0c,y ), 2 = @y, — —5- cos(O., ),

L .
Yr = Yeq ‘l‘ Sln(ecl) Y2 = Yeq — Tl Sln(ecl)a

d2

m2L2 912 Leax = Fa:7 + Fmga
d2
m2L2 dt2 Yecoy — Fy7 + Fy8 — maL2g,
L3 2
m2 T2 20, =Ty + Te

07 = Oc,,08 = 07 + m,
L L
X7 = Tc, + 21 cos(B0c, ), L8 = Tc, — —5- c0s(6Oc, ),

L .
Y7 = Yeqy ‘l‘ Sln(ec2) Ys = Yecop — Tl 51n(002),

N

2
mlLl;Tzzwcl = Fazl + sza
mlLéc‘;‘?ycl = Fy, + Fy, — m1L1g,
L3 42
my T dthO =T, + T3 .
— St Fg, sin(61) + 1 Fy, cos(61) — Fr, sin(62) + L F.

— L2 F,. sin(87) + L2 F,, cos(07) — 2 F,, sin(8g) + 52 F

5 cos(62),

s cos(0g),
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2

maLls Loaeg = Fuyg + Fuyy,
mg3zLg ;?’yc;; = Fy,3 + Fy,, — mgLsg,
rrm%%@% = Ti3 + T1a
— L2—3Far313 sin(013) + L2—3Fy13 cos(013) — 1,2_3le4 sin(014) + L2—3Fy14 cos(6014),
013 = 05,014 = Oy + m,
13 = Teg + % cos(Oc3),
T1a = ey — 5+ €08(0cy), Y13 = Yeg + - sin(Oey),
Y14 = Yeg — % Sin(OC3)7
(Mg +may) Spag = Foy + Fay,
(my, + msl);?’ys = Fyg + Fy,,
Jry 2505 = Ts + Trm,
Joy %504 = Ta — Trm,
Vs — Ve = L, %Is + R 15 + K%(Os — 04),
Kils =Ty, , 3 = ®©a,Ys = Ya, Is = —Is,

N /
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(Mg + M) Ly o = Fag + Fayg)
(mr22‘|‘ m32);?y9 = Fyg + Fyyq>
Jr d B9 = T9 + T'm,

2 dt2
Jso %910 = T10 — T'm;
Vit — Viz = L2 111 + R2I11 + K2 (69 — 610),
K2I11 = Ty 10 = 115 Y10 = Y11, l11 = —I12,

Interconnection equations:

Fuy + Fug =0, Fy, + Fyy =0, @2

T3, Y2
Fw4 —|—Fw7 = 0, Fy4 +Fy7 = O, Lg — L7y Ya = Y7, 94 = 97 —|—7T, T4—|—T7
ng_l_ng:O’ Fy8+Fy9209m8:m99 Ys = Y9, O = Og + w, Ts + Ty

Fyio + Fzig =0, Fg g + Fzy3 = 0,10 = ®13, Y10 = Y13,
010 = 013 + w, Th0 + T13 = 0.

N

ys, 02 = 03 + w, Ty + T3 =
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The behavioral approach lends itself also to some

real mathematics

Notation:

Ring of real polynomials in n variables ~~» R[£7,---

IRn[gla"' 9€n]9R.[€19"' 9€n]9Rnlxn2[€19"' 9€n]9
IR.Xn[gla"' 9€n]9Rnx.[€19'” 9€n]9
IR.X.[Sla"' 9€n]'

N

» &al-
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In the remainder of this lecture, we consider systems

> = (T, W, 2B)

with
T=R", W =R,

w : R — RY, (’wl(wla Tty mn)a ce 9’ww(w17 Tty mn))a
often, n = 1, independent variable time,
or n = 4, independent variables (¢, z, y, z),

'8 — solutions of a system of constant coefficient
linear ODE’s or PDE’s.

\_
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‘ Linear differential systems (PDE’s) I

T = R"*,n independent variables,

W = R", w dependent variables,
S8 — the solutions of a linear constant coefficient system of PDE’s.

Let R € R**¥[&,+ - ,&], and consider

R(aiwl’ 931%)'“):0 (*)

Define its behavior

B = {w € € (R",R") | () holds } | =ker(R(z2, -+ , 52))

¢ (R™, R") mainly for convenience, but important for some results./

N
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Notation:

(R™",R",B) € £, orB € £,

B = ker(R( 0 0
= er ———y e,
3.’131 8:1:n

))-

‘kernel representation’.

39




KAn example: Maxwell’s equations \

~ 1
V-E = —p,
€0
~ 0 -
VXxE = ——B,
ot
V-B = 0,
c’VxB = —j3+ —E.
€0 ot

T = R x R3 (time and space),
w = (E ) B ) .; s P)
(electric field, magnetic field, current density, charge density),
W =R3 xR x R? x R,
B € £ :the set of solutions to Maxwell’s equations.

\Note: 10 variables, 8 equations! = d free variables. /
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‘ Three representation results I

e Relation with sub-modules of R¥[£q, -+ , &,]
e KElimination theorem

e Controllability and image representations

41
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R defines 283 = ker(R(é%l, co

6 ° '
' Bas )), but not vice-versa!

(¢ 3 ‘intrinsic’ characterization of 53 € £7 77

Therefore

N

Define the annihilators of B by
My :={n € R[&1,--- , & | nT(aiwl,... , 6%11)% = 0}.
Iy is clearly a sub-module of RY[£1,- -+ , &,].

Let < R > denote the sub-module of R* £, - - -
transposes of the rows of R. Obviously < R >C tya. But, in fact:

My =< R >

, £.] spanned by the

£ <2 sub-modules of R¥[£1, - - -

9 én]

~

/
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Elimination '

First principles modeling usually requires auxiliary variables

(state variables, interconnection variables, etc.). This invariably leads
(perhaps after linearization) to modeling equations of the form:

R(aiwlaaaiwn)w:M(a e 6)£ (**)

6331 ? ’ 63311

w € €°(R™,R") ‘manifest’ variables,
¢ € €°(R*,R) “latent’ variables,
R and M suitably sized polynomial matrices in n variables.

We view (%) as a model for the behavior of the variables w.

N /
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Define the manifest behavior of (*%) as

B = {w € € (R*,R") | T £ € €>°(R",R*) : (**) holds }

e, B = (R(z2- s 52)) " M(

' O, ¢ ,%)Q:OO(R, RE).

6 o o
6331’

Does °5 belong to £7 ?

Theorem: It does!

Proof: Fundamental principle.

Algorithm: Syzygies, Grobner bases, computer algebra.

N
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Which PDE’s describe (ﬁ , f) in Maxwell’s equations ?

Eliminate B , p from Maxwell’s equations. Straightforward

computation of the relevant left syzygy yields

0 . .

— V. E \ VAR

€oat + J
6'21_77‘+ 2’V x VX E + 0 -
Eo—— EnC —
2 5t2 0 at’

Elimination theorem = this exercise would be exact & successful.

N

/
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‘ Controllability I

Definition: B € £7 is said to be

[ controllable ]

if for all w1, wo € B and
for all O, O C R™, non-overlapping closure,
there exists w € 2B such that w|p, = w1|p, and w|p, = w2|o,-

Controllability :< the elements of 25 are ‘patch-able’.

Special case: Kalman controllability for input/state systems.

N
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In pictures:

47
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Conditions for controllability I

Representations of £7:

R w=0 (v
called a ‘kernel’ representation of B = ker(R(aiwl, ) B 0y);

R(a%l"”

o)W =M (g0 5)0 (x%)

' Bz,

called a ‘latent variable’ representation of the manifest behavior

%:(R(aiwlv ’

) TIM (2

8&31 ’

s+ 52 )€ (R, RY).

Missing link: | w = M(aiwl,--- ,%)E (% * *)
called an ‘image’ representation of 8 = im (M ( 3.21 et 6%)).

N

~

/

49



/Elimination theorem = \

every image (of a linear constant coefficient PDO) is also a kernel.

¢ Which kernels are also images ??

Theorem: The following are equivalent for 5 € £ :

1. B is controllable,

2. | B admits an image representation,

3. foranya € R"[&1,-+- , &),
a’ 52, , 52| equals 0 or all of €= (R", R),

8201 ?

4., |R[&1,+ ¢ , & /Dty is torsion free,

etc.

ngrithm: R + syzygies + Grobner basis => numerical test on coefficients of R/

50
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R® — R and
the vector potential A : R x R3 — R3, generate exactly the solutions
to Maxwell’s equations:

E = —Ej—vgb,
ot
B = VXA,
j = soa—zj—s AVZA 4+ e0c®V(V-A) +¢ ngb
Ot2 0 0 Oat ’
P = —€OEV°X—€OV2¢.
ot

Proves controllability. Illustrates the interesting connection

controllability < 3 potential!

N /
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‘ Summary I

The i/s/o paradigm is inadequate for first principles modeling.
It fails in the first examples, it is unsuited for interconnection, for
modularity, for object-oriented modeling.

Universal paradigm: BEHAVIORAL SYSTEMS.
LY closed under intersection, addition, and projection.

Linear shift-invariant differential systems
<2y sub-modules of R* €1y * 5 &l

Controllability < sub-module is torsion-free.

d extensive theory, adapted to modeling, covering all the

classical results, unifying physical models with DES, etc.

/
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More information?

Surf to

http://www.math.rug.nl/-willems
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‘ THANK YOU .

BEST WISHES TO YOU, INGE ! I
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